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Abstract: Tornado outbreaks (TOs) are a major hazard to life and property for locations east of the
Rocky Mountains. Improving tornado outbreak (TO) forecasts will help minimize risks associated
with these major events. In this study, we present a methodology for quantifying TO forecasts
of varying quality, based on Storm Prediction Center convective outlook forecasts, and provide
synoptic and mesoscale composite analyses to identify important features characterizing these events.
Synoptic-scale composites from the North American Regional Reanalysis (NARR) are presented
for TO forecasts at three forecast quality levels, H-class (high quality), M-class (medium quality),
and L-class (low quality), as well as false alarm TO forecasts. H-class and false alarm TO forecasts
share many meteorological similarities, particularly in the synoptic-scale, though false alarm events
show less well-defined low-level synoptic-scale features. M- and L-class TOs present environments
dominated by mesoscale thermodynamic processes (particularly dryline structures), contrasting
H-class TOs which are clearly synoptically driven. Simulations of these composites reveal higher
instability in M- and L-class TOs that lack key kinematic structures that characterize H-class TOs.
The results presented offer important forecast feedback that can help inform future TO predictions
and ultimately produce improved TO forecast quality.
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1. Introduction

Major tornado outbreaks (TOs) have received considerable attention recently owing to several
noteworthy events. The major TO of 27 April 2011 [1,2] ranked second in recorded history of outbreak
intensity (based on an outbreak ranking index [3]). Other notable TO events have included the Joplin
outbreak on 22 May 2011, the Super Tuesday outbreak in February 2008, and the May 2013 outbreaks
in Oklahoma. These high-impact events have tremendous human impact, and it is imperative that
forecast skill for TOs continues to improve.

Most post-event analyses (case studies) of major TO forecasts have centered around single events
with poor numerical model forecasts or unexpected mesoscale or smaller-scale processes dominating
the outbreak’s development [4]. Such analyses have tremendous benefit for diagnosing favorable
TO synoptic-scale setups for specific events, but their results typically do not generalize to a broader
understanding of forecast tendencies, given the wide variability in numerical model forecast quality.
Such understanding is imperative if TO forecasts are to continue to improve. We address this deficiency
by quantifying and contrasting synoptic-scale outbreak environments associated with TO forecasts
with varying degrees of success.

The ambiguity in what defines a TO [3,5–8] has resulted in a paucity of formal TO forecasts
issued by the National Oceanic and Atmospheric Administration’s (NOAA) Storm Prediction Center
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(SPC), the primary forecasting entity for major convective outbreaks. Additionally, the variety of
underlying meteorological conditions characterizing TOs has led to a wide distribution of SPC forecast
skill [9]. For example, numerical model inconsistency led to lower forecast skill in the major 3 May
1999 outbreak [4,10], despite the event’s classic synoptic-scale appearance. A large cirrus shield east
of the surface dryline delayed the identification of the major tornado threat until the early afternoon
of 3 May; SPC upgraded their outlook to the highest risk level 2 h before the first significant (>F2)
tornado [4,10]. This would have been considered an event with low forecast accuracy based on the
morning prognosis. Conversely, the outbreak of 5 February 2008 was synoptically apparent a week
prior to its occurrence and was well forecast by SPC [11].

Recent work in [12] and [13] has revealed the importance of the synoptic-scale environment
in identifying TO potential. Using the TO definition in [8] (6 or more tornadoes associated with
a single synoptic-scale system), [13] found notable synoptic-scale differences between TOs and
primarily non-tornadic outbreaks. These differences primarily centered around the depth and tilt of
the upper-level geopotential height trough, the magnitude of quasigeostrophic forcing parameters
(namely thermal advection and differential vorticity advection) and the shear profiles. They noted
minimal thermodynamic importance in identifying TO environments.

Given the inherent predictability in the synoptic-scale wind pattern, interesting questions
regarding outbreak predictability arise based on the results of [13]. First, is it possible to identify
synoptic-scale features associated with missed TO forecasts that could help improve future forecast
skill? Second, what are the commonalities at smaller scales among TO events that are not well forecast?
This study seeks to answer these questions using synoptic-scale composite analysis following the
methodology of [13].

Many previous studies have noted the utility of composite analysis in identifying atmospheric
patterns associated with notable meteorological event types, including severe weather. Initial TO
composite research utilized average composites [14,15], as did more recent, regional outbreak
studies [16–19]. Simple averaging, however, has several limitations, most notably dampening relevant
meridional wave structures in the upper-level flow, resulting in non-representative zonal wind
fields in the composite. This issue was first addressed in [20], who used empirical orthogonal
functions to reveal unique variability structures within a select sample TO events, yielding distinct
synoptic-scale map types. More recently, rotated principal component analysis (RPCA) was utilized
in tornadic and nontornadic composite research [13]. Additional work by [21] employed kernel
PCA (which is an extension of RPCA using a kernel-based similarity matrix) to isolate relevant TO
and non-tornadic outbreak synoptic-scale structures and offer improved representativeness to the
composites. Despite these advances, no work has developed composite map types based on TO
forecast quality, which would inform forecasters of important biases and limitations in TO forecasts.

The objectives of this study are two-fold. First, we present a methodology for isolating TO forecasts
with varying degrees of success and derive synoptic-scale composite maps for each, which will reveal
important structural differences in the events. Second, we utilize the Weather Research and Forecasting
Model (WRF— [22]) to isolate relevant mesoscale features unique to each composite structure, which in
turn will help inform forecasters regarding important meteorological fields for TO prediction. Section 2
outlines the datasets selected and the methodology, while Section 3 presents the composite and
WRF simulation results. Section 4 summarizes the important outcomes of the study, while Section 5
presents conclusions.

2. Data and Methodology

2.1. Data

Composite map studies require a diverse set of cases from which dominant patterns may be
derived. Further, a measure of forecast quality is required to discretize TO events based on forecast
success, given this is the primary objective of the study. As the premier operational forecasting entity
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for United States convective outbreaks is the SPC, we elected to use their convective outlooks to
diagnose prediction quality. An event was considered a TO-forecasted event if the SPC issued a 10% or
higher categorical risk for tornadoes in their 1300 UTC Day 1 convective outlook. Note that 1300 UTC
was selected as it was available more consistently than the 1200 UTC outlook time. General inspection
of the outlooks also revealed few differences in forecaster thinking in this one-hour time window.
Convective outlook forecast polygons were obtained from convective outlook shapefiles archived
by the SPC from 2009 (the earliest available archive time) to 2017. Note that no assumptions were
made regarding individual forecaster biases; instead we assumed all SPC convective outlook forecasts
were representative of a similar global forecasting philosophy and that any significant biases were
minimized by the large sample size. Tornado reports from the SPC storm report database [23] were
also used for verification purposes (consistent with [12–19]).

The previously mentioned composite analyses and their WRF simulations require spatially and
temporally continuous three-dimensional base-state atmospheric quantities. The North American
Regional reanalysis (NARR) data [24] were selected as they provide sufficiently small grid spacing
(a 32-km Lambert-conformal grid centered on North America) with 30 vertical levels and 3-hourly
observations spanning the full study period. Geopotential height, air temperature, specific humidity
(SH), and zonal and meridional wind components were retained at all levels including the surface,
as was sea level pressure (SLP). All fields were retained on a 91 × 91 outbreak centered grid
(as defined by the SPC convective outlook, described below), yielding a spatially expansive
(roughly 3000 km × 3000 km) TO domain for composite analysis.

2.2. Methods

Prior to composite analysis, it was necessary to first obtain a distribution of convective outlook
forecast performance to measure predictive success This distribution first required knowledge of which
tornado reports were associated with given SPC convective outlook regions. Previous work [3,8,12,13]
included a tornado report as part of an outbreak if it occurred between 1200 UTC on the outbreak day
and 1159 UTC the subsequent day and was associated with a single synoptic-scale system. A similar
time window was selected in this study, though tornadoes occurring between 1200–1259 UTC were
excluded (which was only 0.8% of the database) as those events would have occurred prior to the
selected 1300 UTC SPC convective outlook time. Given the ambiguity of the definition “associated
with a single synoptic-scale system”, it was necessary to determine if a tornado’s spatial proximity was
sufficiently close to be included as part of SPC’s convective forecast and thus part of the verification.
In [25], kernel density estimation (KDE) was used to identify TO impact regions from SPC tornado
reports. Their KDE was done using a Gaussian kernel function with a bandwidth of 1 and a probability
density function threshold of 0.001 (which we used as well), providing a buffered outbreak region
that revealed tornadoes associated with single synoptic-scale systems (e.g., the dot-dashed polygon
in Figure 1). Tornadoes within the KDE-derived outbreak impact polygon that was nearest the SPC
convective outlook center were considered part of the SPC forecasted TO (e.g., the green and red dots
in Figure 1), while those outside the polygon were assumed separate. The number of tornadoes that
fell within the SPC convective outlook region (buffered by 25-miles to align with SPC’s definition of
“within 25-miles of a point” [23], were counted as hits. The percentages of tornadoes that were “hits” for
each TO were retained as the measure of forecast success (Figure 2). After obtaining this distribution,
it was discretized into three terciles of performance, a high-quality forecast (H-class, 82% or higher of
hits of the distribution), a medium-quality forecast (M-class, 50–82% hit percentage), and a low-quality
forecast (L-class, fewer than 50% of tornadoes were hits). It was also possible to obtain a subset of TOs
that were deemed false alarms, as a 10% tornado probability region was issued by the SPC but fewer
than 6 tornadoes [8] occurred for the entire event. In total, 34 H-class TOs, 36 M-class TOs, 31 L-class
TOs, and 21 false alarm cases were retained for composite analysis.
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forecast tornado reports, while red points represent missed reports. The blue report in southern IN 
was not within buffered outbreak polygon and was not counted in the verification percentage 
calculations. 

Once TO composites were obtained, mesoscale differences between the outbreak environments 
were assessed using 30-h WRF simulations. The WRF was configured with a 12-km Lambert-
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spread in tornado reports (Figure 4), yielding a 200 × 175 domain. 

Figure 1. Example TO case in the L class forecast group (50% of reports within the domain).
Here, the dashed polygon represents the 40-km buffered SPC convective outlook polygon, while the
dot-dashed polygon represents the buffered TO region as defined in [3]. Green points represent correctly
forecast tornado reports, while red points represent missed reports. The blue report in southern IN was
not within buffered outbreak polygon and was not counted in the verification percentage calculations.
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Figure 2. Percentages of tornadoes within SPC-issued convective outlook 10% tornado probability
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(terciles) used to break the classes into the H-class, M-class, and L-class events described above.
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Once forecast classes were established, a synoptic-scale representation of each class was
constructed using compositing methods from [13]. K-means cluster analysis and hierarchical cluster
analysis using Euclidean distance and Ward’s minimum variance method [26] were tested as possible
methods to group TO events with similar spatial structures in their outbreak-centric NARR domains.
As each forecast class contained fewer than 40 events, cluster sizes from 2 up to 8 were tested to ensure
sufficiently large sample sizes in each group. NARR fields from the outbreak valid time (defined as the
3-h NARR time window during which the most tornado reports occurred) were used as input into the
clustering algorithms, though NARR times spanning 24 h prior to the outbreak valid time and 6 h after
the valid time were also retained for each event for WRF modeling purposes (see below). Before the
final clustering was established, the silhouette coefficient [27] s was used to measure representativeness
of the resulting clustering. The silhouette coefficient compares the average Euclidean distance between
a cluster member and all events within the same cluster (called cluster cohesion) with the Euclidean
distance between a member and the nearest adjacent cluster (called cluster separation). The most
representative clusters minimize cohesion and maximize separation (a perfectly clustered event has
s = 1), while negative s values suggest a member may be better represented by the neighboring
cluster. Global representativeness was quantified by ranking each cluster analysis method by the
number of misclustered (negative s) values and the average silhouette coefficient for all TOs in the
cluster analysis. The smallest rank sum of those two measures was deemed the most representative
clustering configuration (Table 1). Unlike [13] or [21], when preprocessed using rotated or kernel PCA,
representativeness measures did not improve, likely a result of the smaller sample sizes in the forecast
classes used herein. All clustered events were then averaged for each individual NARR time to retain
a temporally consistent outbreak evolution for each TO composite (needed for the WRF simulations
discussed below).

Table 1. Optimal clustering method for each forecasting class with performance statistics. Misclustered
refers to the number of negative s values from the clustering method, while s is the average silhouette
coefficient for all clustered events. The number of clusters kept for each class is equal to the length of
the cluster sizes.

Forecast Class Clustering Method ¯
s Misclustered Clusters Kept Cluster Sizes

H-class K-means 0.181 0 3 9, 4, 21
M-class Ward’s Hierarchical 0.220 1 2 8, 22
L-class Ward’s Hierarchical 0.220 2 2 10, 26

False Alarms K-means 0.183 1 2 10, 11

Once TO composites were obtained, mesoscale differences between the outbreak environments
were assessed using 30-h WRF simulations. The WRF was configured with a 12-km Lambert-conformal
outbreak-centric domain and a 45 s timestep and 45 vertical levels. Average latitude/longitude for the
constituent cases for each cluster was used as the composite TO center (Figure 3). Each simulation
domain was then extended so that the domain spanned the maximum spread in tornado reports
(Figure 4), yielding a 200 × 175 domain.

WRF model parameterizations were selected to maintain consistency with [13]. In particular,
the WRF single moment microphysics scheme [21], the Grell-Devenyi convective scheme [28],
the Yonsei University planetary boundary layer scheme [29], the rapid radiative transfer longwave
radiation model [30], the Dudhia shortwave radiation scheme [31], the MM5 similarity theory
surface layer scheme [32], and the 5-layer thermal diffusion land surface model [22] were used.
Commonly utilized severe weather diagnostics (e.g., convective available potential energy [CAPE]
bulk shear, storm relative environmental helicity [SREH]) and composite indices (supercell composite
parameter, significant tornado parameter) were computed from soundings retained from each
WRF gridpoint.
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Figure 4. Locations of missed tornado reports. (a): georeferenced to the centroid of the SPC convective
outlook (center of the panel a); (b): shows the relative frequency of tornadoes in each quadrant to
demonstrate forecaster error tendency based on the convective outlook polygon. Directions in panel b
are relative to 0◦ as north, as is the case with meteorological wind direction.
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3. Results

3.1. General Outbreak Characteristics

Prior to assessing synoptic-scale characteristics of the composites for each forecast class,
general forecast performance characteristics were obtained. The average geographic position of
the outbreak centers for each forecast class (Figure 3) revealed interesting biases in the TO forecasts.
Notably, the H-class (best performing) outbreak forecasts tended to shift farther south and east
(green points in Figure 3), with considerably limited H-class coverage over the Plains despite the
greater point density in that region. This result is likely a consequence of the underlying characteristics
of Southeastern U.S. TOs (they are more synoptically-driven [33,34]) which should increase their
predictability. M-class outbreaks were generally centered over Oklahoma, Arkansas, and the Tennessee
Valley, while the L-class outbreaks (worst performing) were almost exclusively west of the Mississippi
River, with most of these events occurring in the southern and central Plains. False alarm cases showed
no general geographic preference, though most were confined west of the Mississippi River as well.
Interestingly, the only two New England TO forecasts met false alarm criteria. The geographic spread
of all four forecast classes was similar (with a few geographic outliers being noted for the false alarm
cases), suggesting these biases are not a consequence of higher spreads in different forecast classes but
instead a result of underlying atmospheric or geographic features.

Next, we isolated outbreak-relative geographic tendencies of the TO forecasts (Figure 4).
Here, all tornadoes that fell outside of a given SPC convective outlook polygon (misses) were
georeferenced with the center of the convective outlook (the origin in Figure 4a) and divided into
geographic quadrants. A frequency analysis revealed a strong bias towards missing tornadoes
northeast of the given TO’s convective outlook (Figure 4b), which shows timing issues (likely the end
of the outbreak) may be responsible for some of the observed forecast errors. Further, these results
suggested that mesoscale and synoptic-scale conditions northeast of the SPC convective outlook should
be investigated more thoroughly to ascertain the reasons for this forecasting tendency.

Finally, a brief temporal analysis was done for each of the four forecast groups to assess any biases
in TO valid times by forecast class (Figure 5) and any seasonality in the results (Figure 6). The valid
time analysis (Figure 5) revealed that the most frequent peak tornado activity time was consistently
2100 UTC for all classes, and 80% of all TO valid times spanned 1800 UTC to 0000 UTC the following
day. H-class composites had the greatest number of 1800 UTC valid times and the smallest overall
frequency of 2100 UTC times (though 2100 UTC was still the most active time). This temporal shift
supports the idea that many H-class TOs were synoptically driven as they had sufficient synoptic-scale
vertical forcing to overcome midday convective inhibition in the boundary layer. Late evening or early
morning outbreaks were rare regardless of forecast class, though M-class outbreaks had peak activity
after local midnight on one occasion.
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Figure 6. TO frequency by month for (a) H-class TOs; (b) M-class TOs; (c) L-class TOs and (d) False
Alarm cases.

The monthly frequency analysis (Figure 6) revealed a higher tendency towards early summer in
L-class TOs, while most TOs occurring in April were H-class (the peak TO activity time for Southeastern
U.S. events [35]). False alarms showed no real preference towards a given month as their frequencies
mirrored typical tornado frequency climatology as seen in [35]. Additionally, fall and winter TOs
showed no favorability towards a given class, even though convective initiation in many cold season
TOs requires enhanced synoptic-scale vertical forcing. We hypothesized that these general outbreak
characteristics resulted from higher predictability of synoptically-evident TOs (that occur during the
winter and early spring) versus those that are primarily dominated by mesoscale processes (a result
we explore further in the upcoming sections).

3.2. Synoptic-Scale Composite Results

For brevity, results from H-class cluster 3 (N = 21), M-class cluster 2 (N = 22), L-class cluster 2
(N = 26), and false alarm cluster 2 (N = 11) are presented below as they were the most commonly
observed patterns within each class and as such show the most prevalent biases in TO predictability.
Composite fields valid 9-h prior to the TO valid time (assumed to be 2100 UTC based on the results in
Figure 5) are shown as they represent meteorological conditions at approximately the same time as the
SPC would issue its 1300 UTC convective outlook. Note that many composite fields were noisy owing
to the small grid spacing in the NARR; we analyzed general tendencies in magnitudes and spatial
locations in this section as opposed to local maxima/minima which were non-significant.

Ageostrophic divergence (typically observed in proximity to jet streaks within the polar jet stream
and upper level divergence associated with gradient wind balance) was used to diagnose 300-mb
synoptic-scale vertical forcing in the composites (Figure 7). H-class composite 300-mb ageostrophic
divergence (Figure 7a) showed considerably higher (roughly 50%) magnitudes near the outbreak
than the ageostrophic divergence in the M-class and L-class composites (Figure 7b,c). The false alarm
composite ageostrophic divergence closely mirrored the H-class map (Figure 7d), though the highest
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magnitude ageostrophic divergence regions were not collocated with the outbreak center; instead they
were shifted northwest. Upper level wind speeds were also notably southwesterly and faster in the
H-class composite relative to the M- or L-classes. These faster winds coupled with the predominant
southwesterly direction in the H-class maps revealed a speed-shear dominant environment in the
H-class TOs more commonly associated with quasi-linear convective systems (QLCS). This result
was consistent with the geographic tendencies of the H-class, as southeastern U.S. tornadoes are
more frequently associated with QLCS processes than those observed in the Plains [33,34]. Areas of
ageostrophic divergence were also present north and northeast of the TO center the L-class composites
(though they were weaker than any other composite). The weaker magnitudes suggested TOs in the
L-class had little upper-level synoptic-scale forcing, limiting their predictability.
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Figure 7. Composite 300-mb ageostrophic divergence (shaded, units are 10−4 s−1) with geopotential
height (m) and winds (in m/s) for (a) H-class cluster 3; (b) M-class cluster 2; (c) L-class cluster 2;
(d) false alarm cluster 2 TO forecasts. The composite is presented at the time the convective outlook
was issued (roughly 9 h prior 2100 UTC, the assumed TO valid time for all composites). The black dot
represents the composite outbreak center.

Synoptic-scale vertical motion is frequently described using mid and upper-level differential
geostrophic vorticity advection in combination with low-level temperature advection via the
quasigeostrophic omega equation [36]. We present differential vorticity advection at 500-mb computed
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using geostrophic vorticity advection profiles one NARR pressure level above and below the 500-mb
level (Figure 8). Rising motion (positive differential vorticity advection, blue shading in Figure 8) was
observed in proximity of and west of the TO center for the H-class composites. M- and L-class patterns
had little in the way of differential geostrophic vorticity advection owing to the limited curvature
and shear in their flow patterns. This lack of curvature or shear vorticity reinforced the notion that
these TOs do not have the synoptic-scale structures typically observed with synoptically-evident TOs
(which the H-class are). False alarms had similar forcing magnitudes and structures to the H-class,
though the maximum in negative differential geostrophic vorticty advection over the TO center may
have limited tornado production in those events. There was also a shortwave trough co-located and
slightly east of the TO center in the false alarm composites that likely increased negative geostrophic
vorticity advection near the TO center. This feature was useful in helping to isolate H-class TOs from
false alarm events.
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Figure 8. 500-mb differential geostrophic vorticity advection (as in QG theory) in 10−9 s−2 Pa−1 for
(a) H-class TOs; (b) M-class TOs; (c) L-class TOs; (d) false alarms. According to QG theory, negative values
are supportive of sinking motion (ω > 0) while positive values are supportive of rising motion (ω < 0).

To complement the mid-level results, 850-mb temperature advection (Figure 9) patterns were also
constructed from the composites. The H-class composite (Figure 9a) showed a clear maximum of warm
air advection east and northeast of the TO center resulting from the strong north-to-south temperature
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gradient spanning the outbreak region. Temperature gradient structures in the M-class and L-class
composites were oriented more east-to-west, generally directed towards hot and dry air over the Desert
Southwest (and suggesting these forecast classes had increased frequency of dryline-based vertical
forcing). Smaller warm air advection maxima were observed in the M-class and L-class composites as
well, and these patterns were shifted north (for the L-class) and northwest (for the M-class) of the TO
center (as opposed to east). These differences may be important in improving the convective outlook
regions for the M-class and L-class events (further work would be needed to explore this) as these
low-level patterns show the greatest distinctions between the groups. The false alarm composites
showed little in the way of 850-mb geostrophic flow coupled with a strong thermal gradient that was
confined southwest of the TO center. These false alarm patterns more closely matched M-class and
L-class temperature advection magnitudes, suggesting the upper-level features were more responsible
for false alarm TO forecasts.
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Figure 9. 850-mb temperature advection (units of 10−4 K/s) with geopotential heights (solid lines) and
isotherms (dashed lines) for (a) H-class TOs; (b) M-class TOs; (c) L-class TOs; (d) false alarms. Dashed
lines are 850-mb isotherms.

At the surface (Figure 10), a strong extratropical cyclone was clearly evident in the H-class
composite, while a west-to-east moisture gradient (assumed to be a weak dryline) with an associated
thermal low west of the boundary were notable in the M- and L-class patterns. These results support
those in Figures 6–8 that suggest mesoscale-dominant outbreaks (i.e., those driven by thermodynamic
processes) have inherently lower predictability. Interestingly, the moisture content in the M- and L-class
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composites was also almost 50% higher than what was observed in the H-class composite and extended
much farther north. This increased moisture and clear west-to-east moisture gradient characterized
most M-class and L-class TOs. It is likely that these meteorological structures contributed to forecast
errors as convective outlook domains may not have spanned all tornado-prone geographic regions
(the mesoscale analyses presented below reinforce these ideas) and these thermodynamically-driven
features are often poorly forecast by numerical weather prediction models. Finally, the false alarm
composite revealed a similar moisture profile to the H-class (less moisture than both the M- and L-class
composites), but lacked a well-established surface cyclone. Overall, the composite results showed the
importance of the synoptic-scale processes in ensuring forecast success; those TOs driven by mesoscale
processes were frequently not forecast well owing to the difficulties numerical weather prediction
models have in rendering their underlying thermodynamics. Clearly, research devoted to improving
the mesoscale rendering of TOs is paramount for improving forecast success.
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Figure 10. Surface composite characteristics for (a) the H-class TOs; (b) M-class TOs; (c) L-class TOs;
(d) false alarms. Solid lines are isobars of mean sea level pressure and shading is specific humidity in g/kg.

3.3. Mesoscale Characteristics

WRF simulations were used to diagnose mesoscale structural differences in the composite
fields. Specifically, SREH over the effective layer (ELSREH) [37], mixed-layer CAPE (MLCAPE) [36],
and supercell composite parameter (SCP) [38] were computed from simulation output to measure
tornado potential. These parameters were selected as they quantify the suitability of the kinematic
fields (ELSREH) for tornadogenesis, the abundance of available convective instability (MLCAPE),
and a global diagnostic that measures conditions suitable for supercell convection (SCP). We also
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computed the significant tornado parameter [38], though its magnitudes were too weak to discern
meaningful structures in any composite. These limited magnitudes were likely a consequence of
the smoothed boundary conditions (resulting from averaging TOs in each cluster) provided by the
composites in the WRF simulations.

ELSREH fields (an important kinematic tornadogenesis parameter) are provided in Figure 11.
H-class and false alarm simulations (Figure 11a,d) both showed maxima in ELSREH near the TO
domain center, contrasting the M- and L-class ELSREH (Figure 11b,c) results. The available M-class
and L-class ELSREH maxima were also located behind the dryline (Figure 10b,c) in those composites,
limiting the utility of the available ELSREH in tornadogenesis owing to limited convective potential.
These inconsistencies are largely responsible for the difficulties in identifying the tornado region in
the M-class and L-class TOs. Heavy forecaster reliance on such parameters likely contributed to the
forecast errors noted in Figure 4.
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Figure 11. Simulated effective layer storm relative helicity (m2 s−2) for the most commonly observed
composite for each forecast class (a) the H-class TOs; (b) M-class TOs; (c) L-class TOs; (d) false alarms.
Note that this domain fully encompasses the error domain seen in Figure 4 so intercomparisons can
be made. As in Figures 7–10, outbreak centers are based on the average convective outlook center
within constituent members of the given cluster. Simulations are valid at the assumed TO valid time
(2100 UTC), based on the results in Figure 5.
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The MLCAPE fields (Figure 12) showed slightly lower mixed-layer instability in the H-class
and false alarm groups, contrasting the higher instability seen in the M- and L-class composites.
These patterns resulted from the greater surface moisture seen in Figure 10b,c east and north of the TO
center, implying that many of the forecast errors seen in Figure 4 were associated with underestimating
available instability north and east of the convective outlook region. Interestingly, as was the case with
the ELSREH fields, the false alarm composite appeared very similarly to the H-class composite though
with slightly lower MLCAPE magnitudes. Importantly, the MLCAPE maxima in the M- and L-class
composites were spatially displaced from the optimal ELSREH regions; thus, tornadoes occurring in
these classes lacked significant kinematic structures associated with classic TO events but instead were
thermodynamically driven. This suggests lower predictability of thermodynamic processes within
TOs was the primary driver of forecaster error in those cases.
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Figure 12. Same as Figure 11, but for mixed layer CAPE (J/kg) (a) the H-class TOs; (b) M-class TOs;
(c) L-class TOs; (d) false alarms.

The work in [37] offered a composite index, the SCP, to represent environments conducive for
supercelluar convection typically responsible for most TOs. The SCP is heavily dependent on both



Atmosphere 2019, 10, 16 15 of 20

MLCAPE and ELSREH, and that influence shows in the composite simulation results for this field
(Figure 13). The highest SCP values were centered over the TO center in both the false alarm group
and the H-class composites, while the M-class and L-class composites had simulated SCP values
considerably displaced from the TO center (resulting from the displaced ELSREH maxima in those
composite simulations). In fact, the SCP domains mirrored the ELSREH heavily as MLCAPE was
available in all composites; the reduced SCP in the L-class was likely a consequence of the unfavorable
ELSREH patterns in the L-class events. Despite appearing unfavorable for TOs, the L-class events
produced TOs with at least 6 tornadoes, meaning additional research into diagnostic indices that
represent such events more effectively is needed to help improve predictability. Such indices may also
help isolate differences between the H-class and false alarm composites, as the similarities seen in
Figures 11–13 are likely contributing to currently observed false alarm TO forecast rates.
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4. Discussion

While the maps presented herein revealed important mesoscale and synoptic-scale differences
between TO forecasts of varying quality, it was important to also diagnose how well these patterns
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represented the constituent members within each cluster. To address this, Pearson correlation
coefficients (Tables 2–4) between the 500-mb geopotential height fields (Figure 8) of the individual
cases comprising each cluster and the overall cluster pattern were generated, and similar correlations
were done for 850-mb temperature (Figure 9) and near-surface specific humidity (Figure 10) to assess
thermodynamics. Bootstrap confidence intervals (1000-replicates) were generated by averaging the
correlations of each constituent member (at all composite timesteps) with its composite field to obtain
measures of statistical significance. We expected these correlations would be high, though the bootstrap
analyses revealed important representativeness limitations of the composites that helped inform their
reliability. Differences were deemed statistically significant if the 50th percentile of one composite’s
results fell outside the confidence interval of another (as in [13,21]).

Table 2. Bootstrap 95% confidence intervals for the average Pearson correlation between the composite
fields for each forecast class and their constituent maps for each composite. All composite timesteps
were used to compute the average. Values closer to 1 suggest the composite is more representative of
its constituent members.

Cluster Name
500-mb Geopotential Height

N 2.5th Percentile 50th Percentile 97.5th Percentile

H-Class Cluster 1 9 0.878 0.895 0.910
H-Class Cluster 2 4 0.915 0.926 0.935
H-Class Cluster 3 21 0.906 0.914 0.920
M-Class Cluster 1 8 0.920 0.932 0.942
M-Class Cluster 2 22 0.852 0.865 0.877
L-Class Cluster 1 11 0.898 0.907 0.916
L-Class Cluster 2 26 0.847 0.862 0.877

False Alarm Cluster 1 10 0.850 0.869 0.887
False Alarm Cluster 2 11 0.800 0.817 0.834

Table 3. Same as Table 2, but for 850-mb temperature.

Cluster Name
850-mb Temperature

N 2.5th Percentile 50th Percentile 97.5th Percentile

H-Class Cluster 1 9 0.800 0.827 0.849
H-Class Cluster 2 4 0.896 0.907 0.917
H-Class Cluster 3 21 0.857 0.868 0.878
M-Class Cluster 1 8 0.847 0.871 0.891
M-Class Cluster 2 22 0.784 0.800 0.816
L-Class Cluster 1 11 0.821 0.844 0.865
L-Class Cluster 2 26 0.766 0.782 0.796

False Alarm Cluster 1 10 0.750 0.772 0.795
False Alarm Cluster 2 11 0.789 0.819 0.845

The H-class TO was characterized by a synoptically-evident environment with a distinct slightly
positively tilted mid-level trough and elevated ageostrophic divergence and positive differential
vorticity advection magnitudes. H-class TOs were also characterized by less low-level moisture relative
to other forecast classes despite stronger low-level warm air advection. Clearly, strong synoptic-scale
vertical forcing was present for H-class TOs, a fact that likely increased their predictability. H-class
composites were also most representative of their constituent members, as both kinematic and
thermodynamic structures within H-class cluster 3 had the statistically significantly highest correlations
(Tables 2–4) of any composite shown in Section 3. Note that some smaller clusters had higher
correlations as a result of their reduced sample sizes.
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Table 4. Same as Table 2, but for near-surface specific humidity.

Cluster Name
2-m Specific Humidity

N 2.5th Percentile 50th Percentile 97.5th Percentile

H-Class Cluster 1 9 0.828 0.839 0.850
H-Class Cluster 2 4 0.852 0.869 0.885
H-Class Cluster 3 21 0.853 0.861 0.871
M-Class Cluster 1 8 0.886 0.896 0.905
M-Class Cluster 2 22 0.792 0.801 0.809
L-Class Cluster 1 11 0.841 0.853 0.865
L-Class Cluster 2 26 0.791 0.806 0.820

False Alarm Cluster 1 10 0.778 0.794 0.808
False Alarm Cluster 2 11 0.826 0.841 0.856

M-class forecast environments were less synoptically evident, instead being characterized by
a modest west-to-east moisture gradient (Figure 10b) ahead of a poorly defined surface thermal
low. These events were primarily thermodynamically driven as they had the highest moisture
content and abundant instability throughout their composite domains (Figure 12b) that overcame
the limited kinematic favorability. Simulated composite indices (such as the SCP—Figure 13b) were
consequentially displaced from the eventual forecasted outbreak center by SPC, resulting in forecast
errors in the convective outlook domain placement. The representativeness of M-class cluster 2 was
also statistically significantly lower than H-class cluster 3 (particularly the thermodynamic fields,
Tables 3 and 4), suggesting that while these TOs were forced by mesoscale processes, the variability in
those processes was likely responsible for their lower forecast success.

Many characteristics of the L-class TOs were indistinguishable from M-class events, particularly
the reduced availability of synoptic-scale forcing mechanisms and generally unsuitable vertical
wind profiles for TOs. L-class TOs were dominated by abundant moisture and low-level instability
(like M-class TOs), though any associated drylines in the L-class were less pronounced. Importantly,
the L-class composites had even lower representativeness in the 850-mb temperature field (which is
strongly related to its MLCAPE) than either the M- or H-class TOs. Additionally, L-class TOs lacked a
clear warm air advection maximum east of the TO center. The results help demonstrate the challenges
associated with forecasting these less synoptically-evident events and offer some insight into the
processes governing such outbreaks.

While the M-class and L-class composites revealed clear meteorological factors that increased
their forecast complexity, the false alarm composites showed many similar structures to H-class
cluster 3. Upper-level false alarm composite flow patterns largely resembled the H-class, with the
only notable distinguishing characteristic a different trough depth west of the TO center (Figure 8).
Similarly, low-level temperature advection magnitudes had similar magnitudes to H-class events,
though 850-mb flow was weaker (the higher advection magnitudes resulted from a stronger
temperature gradient southwest of the TO center). Another notable difference was the general absence
of a pronounced extratropical surface cyclone in the false alarms (Figure 10d). Most mesoscale indices
appeared similarly between the false alarms and H-class as well (notably SCP—Figure 13a,d and
ELSREH, Figure 11a,d), suggesting additional research investigating the development of an index that
incorporates both mesoscale and synoptic-scale outbreak characteristics could help reduce false alarm
frequency. False alarm composites were also the least representative of any cluster (Tables 2–4) and had
the lowest overall frequency in the outbreak database. While these composite fields helped reveal some
potential forecast difficulties, more false alarm examples are needed to obtain more representative
meteorological patterns, which in turn would help reduce false alarm forecasts.

5. Conclusions

Tornado outbreaks continue to be a major hazard for locations east of the Rocky Mountains in
the United States. Improving TO predictability is of utmost importance to ensure minimal impacts
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on life and property. The SPC is NOAA’s premier tornado forecasting entity, responsible for issuing
severe weather outlooks that encompass broad geographic regions in the U.S., the nearest proxy to
TO forecasting that is currently done. While the SPC’s TO forecasting is state-of-the-art in operational
meteorology [9], a better understanding of the physical characteristics underlying those TO forecasts
with reduced success should help further improve forecast capability. The primary goal of this work
was to identify atmospheric conditions associated with TO forecasts of varying quality, revealing
important atmospheric features that affect forecaster performance. We expected that such information
will help improve TO predictability and reduce false alarm TO forecasts.

TO forecast quality was computed on SPC convective outlooks spanning 2009-2017 where a 10%
probability region for tornadoes (or higher) was present (122 total TOs). Tornado counts were obtained
for each retained TO and percentages of tornado reports (based on a KDE-derived outbreak impact
domain [24]) falling in the convective outlook polygon (hits) were used to develop a distribution
of forecast quality (Figure 2). This distribution was broken into terciles, where 50% or lower was
deemed a low-quality forecast (L-class), between 50% and 82% a medium quality forecast (M-class),
and above 82% a high-quality forecast (H-class). False alarm cases were also retained if fewer than
6 tornadoes were reported for the given TO forecast, as this does not meet the definition of a TO
according to [8,11,12,20]. In general, all TO forecast classes showed peak activity during traditional
tornado season (April–June), and peak tornado activity occurred in over 80% of outbreaks between
1800 UTC and 0000 UTC the following day (over 50% occurred at 2100 UTC). TO forecast errors were
also diagnosed by geographic position relative to the respective convective outlook center (Figure 4),
revealing a bias towards errors northeast of the convective outlook region. Cluster analysis, optimized
using silhouette coefficients, was used to combine TOs in each forecast class into synoptic-scale
composites by averaging three-dimensional outbreak-centric NARR domains for all event in each
cluster (Figures 7–10). Finally, the WRF was used to obtain mesoscale features within these composites
by simulating the composite fields themselves (Figures 11–13).

The primary synoptic-scale results presented important distinctions in low-level temperature
advection and near-surface moisture profiles. M-class and L-class TOs had larger moisture plumes
east and north of the convective outlook center (and associated dryline structures west of the outbreak
center), suggesting the tornado-prone environmental conditions may extend farther than originally
forecast (a conclusion confirmed in Figure 4). M-class and L-class TOs also had much weaker 850-mb
warm air advection displaced from the TO center, while advection profiles in H-class outbreaks were
centered on the TO center. Few differences were seen in the upper levels, though southwesterly flow at
300-mb was commonly seen in the H-class composites, suggesting less turning with height and more
speed shear contributing to the tornadoes within a H-class TO. These patterns suggested H-class TOs
were synoptically evident and likely QLCS driven systems, possibly with supercell convection ahead
of the main line. M-class and L-class events were found to be more thermodynamic in nature and more
reliant on mesoscale processes for their formation, increasing their forecasting complexity. We expect
more research into the tornado potential in such thermodynamically dominant environments will help
further improve forecast performance.

Composite mesoscale simulations (Figures 11–13) revealed ELSREH as the primary variable able
to distinguish H-class events from M- and L-classes. M- and L-class composites were characterized by
greater MLCAPE (consistent with their surface synoptic-scale structures) despite their reduced ELSREH
magnitudes (evidenced by the lack of a well-defined upper-level synoptic-scale forcing mechanism),
which resulted in lower SCP values near the outbreak center in those composites. These results
reveal many forecast challenges; numerical weather prediction models utilize parameterizations to
estimate thermodynamic processes within TO environments but can forecast kinematic fields directly,
so outbreaks that are more thermodynamically driven (which M-class and L-class clearly are) require
more research to understand their underlying processes more fully.

Overall, these results demonstrate the utility of composite analysis in identifying general
atmospheric characteristics that could potentially improve forecasts. Most synoptic-scale results
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were consistent with previous work. However, the results presented herein suggest TO predictability
can be further improved by deriving an atmospheric parameter that blends information at both the
mesoscale and synoptic-scale. Future work will investigate the development of such a parameter and
will quantify any potential benefits offered in TO forecasting. Ultimately, while previous work [9]
has shown TO forecasting to be quite successful, further improvements may be achieved by carefully
focusing on improving understanding of mesoscale processes within TOs.
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